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Granular dynamics in a swirled annulus
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A swirled annular channel is introduced that is suited to study the dynamics of granular arrays. We uncover
the mechanism that is responsible for the change of the sense of rotation of a two-dimensional cluster of
spheres that is excited by horizontal, orbital shaking. Experimental investigations are presented that show the
influence of packing density, channel width, driving frequency, and material parameters. We compare this with
a simple one-dimensional model. It is seen that the system is governed by single binary collisions that give rise
to global behavior, namely, a corotating or counterrotating motion of the cliS#®063-651X%98)11910-4

PACS numbdss): 81.05.Rm, 83.10.Pp

[. INTRODUCTION and can be labeled. This improves experimental techniques,
such as visualization of particle trajectories, because their
Recently it was stated that granular material should beenter of mass can be studied on a circular line.
considered as an additional state of matter in its own right Second, this system is suited to study related areas,
[1]. Shaking sand, mixing cereals, or smashing frozen tomasamely, collision dynamics, and cluster formation. Recently
toes exhibit phenomena that cannot be explained by ththere was much effort to improve the model of binary colli-
physics of solids, liquids, or gases. A granular system mighsions [8]. Numerical simulations like molecular dynamics
show a solidlike behavior as in the case of a simple sand pildechniques or event driven codes rely on an almost perfect
But it breaks down when, for example, blowing wind forces description of the collision events. To describe dissipation by
desert sand to form unique patterns of ripples and dunes. # coefficient of restitution gives only a simplified picture of
seems to be promising to formulate a theory that is a synthehe impact. Classical methods such as Hertz's contact law
sis of well established concepts: the base of a dune a solithave to be extended to achieve agreement between simula-
the surface of the ripples a fluid, and the saltated grains &ons and experimental finding8]. Recently the concept of
simple gas. Unfortunately there was no success in establislinelastic collapse, where particles collide infinitely often in a
ing such a unified theory of granular matter. Nonethelesdinite time and build clusters, caused much excitement in the
different approaches were introduced to explain the strangfeld of granular materig]10]. Grossman and Mungdrd.1]
common behavior of grains and spheres. Computational ektudied the motion of three particles on a ring that has an
fort started at the basics and modeled single grains and thedttractive similarity to our system. In the meantime investi-
collision dynamicg 2], classical systems like Taylor-Couette gations on the inelastic collapse of rotating sph¢t2$ were
devices were stressed to reveal the underlying mechd@ikm established. These results also fit into our schema because we
and hydrodynamical descriptions were introduced to studylo not suppress the spinning motion of the spheres. Experi-
simple one-dimensional casp$. In addition to these valu- mental work on cluster formation already exists but without
able insights new surprising phenomena like “oscillorj§]  evidence of inelastic collapgd3]. We also think that our
or “inelastic collapse”[6] were found that even enhance the work is related to studies of one-dimensional granular col-
interest we already attribute to granular material. umns, which deal with friction-induced self-organization
In this paper we study a system that is marked by itd14], investigations where the particles are excited by white
simplicity. It was shown that when spheres are placed in aoise[15] or experiments where a type of solitary wave is
circular container and experience an orbital shaking the sensehserved 16].
of rotation of the cluster depends on the number of spheres: Finally it is important to note that the main advantage of
At low packing density, the spheres rotate in a positive di-our simple setup is that it can be described by a one-
rection (rotation mod¢ whereas at high packing densities dimensional model. Here, the spheres are one-dimensional
they go the other way aroun@eptation modg[7]. Because particles with a certain length. Their centers of mass are
in the reptation mode the diffusion coefficient is low, i.e., therestricted to a circular line where it is excited by a sinusoidal
spheres barely separate, the following question arose: Is force that exactly simulates the conditions of our system. It is
possible to neglect the inner cluster and replace it by a fixedeen that this model is in good agreement with our experi-
disk? In order to answer this question we develop a setumental findings and that it reveals the main mechanism of
that consists of an annular channel where the dynamics dhe phenomenon.
spheres is studied. To our surprise the same phenomenon is This paper is arranged as follows: First we introduce our
observed. The circular granular array changes its sense sttup and present our experimental results. We study the
rotation when the particles exceed a critical number. influence of packing density, channel width, and driving fre-
It is found that an annular system exhibits several advangquency and we visualize the particle dynamics. In the second
tages: First, in a narrow channel the spheres cannot pass; thart we discuss this in light of a one-dimensional theoretical
position of a single sphere is fixed in relation to its neighborsmodel. We first derive the dynamics of a single sphere. Then
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CCD-Camera Ring lamp B. Experimental results

To exhibit the effect that granular material swirled in a
circular container changes its sense of rotation when the
packing density is increased we perform four different sets of
experiments. First we show that the effect is robust and can
be restricted to a narrow annulus where neighboring spheres
cannot pass. Hence the problem is reduced to a one-

| dimensional array where the granular column is allowed to
move on a circle that has periodic boundary conditions. Sec-
ond we show the influence of the channel width to obtain
information on the dynamical behavior of the spheres for the
transition from open container to narrow channel. Moreover
we change the driving frequency of the system. These results

we extend the model and show that the change of the sengge shown in the third section for different materials. Finally

of rotation is due to what we call “free path restriction.” \ye ty to track down the essence of the mechanism by visu-
Finally we support this picture by simulating the situation alizing the particle trajectories.

where many particles are involved.

Annular
container

==

Spheres

=

Heavy marble table Orbital shaker

FIG. 1. Experimental setup.

1. Influence of packing density

Il. EXPERIMENT In the first experiment we capture the basic features of the
effect that granular material changes from a rotation to a
reptation mode when the number of partiché$s increased.
The heart of the experimental setup, which is seen in FigHere we choose a channel with the smallest width, 10.5 mm.
1, is an adjustable reciprocating orbital shakEnermolyne  This means that the spheres have clearance of about 0.25 mm
AROS 160. This device operates such that during one oscilon each side. The driving frequency is set to 2.5 Hz. The
lation period every pointx,y) on the table moves in a circle spheres are made of bronze. We measure theTinaesingle
in the laboratory frame according =Asin(wt) andy  sphere needs to orbit the whole channel. This period of ro-
=Acost), where A is the amplitude of motion,w tation is measured five times. It is seen that this value sensi-
=2mfy, and fy the driving frequency of the shaker. It is tively depends on the horizontal alignment of the container.
important to note that this circular motion has no center ofif the annulus is slightly tilted the sphere velocities vary in
rotation, i.e., every particle feels the same amount of cendifferent sections of the channel. In addition, due to inhomo-
trifugal acceleratiora=w?A. Moreover the direction of the geneities of the channel width this effect is enhanced. To
acceleration is the same for every point. The shaker is fixednsure that the velocities are aimost homogeneously distrib-
on a heavy marble table to avoid internal vibrations of theuted we test the speed of a single sphere by the following
setup. The marble table weighs about 350 kg. Due to meprocedure: We divide the annulus into four quarters and
chanical constraint$y cannot exceed 4.5 Hz. We keep the measure the time the bead needs to pass a certain section. We
amplitude of motion constant #&=9.53 mm. An annular adjust the channel in such a way that these times only differ
container is fastened on the swirling table to investigate théyy +15%.
granular dynamics of the spheres. The annulus is milled out To obtain the phase diagram we start with one particle
of Plexiglas. Its outer radiuR,, is 50 mm. The width of the and increase the packing density in steps of one particle
channelw varies. We use six different containers with  number. At a minimum, we wait 2 min until the velocities
=10.5, 11, 12, 14, 16, and 18 mm. Theight of the chan- adjust. At the critical point this time has to be increased
nel is 10 mm. To characterize the surface of the annulabecause the cluster moves very slowly. We wait at least until
channel we measured the arithmetic average roughRgss the measured times are almost constant, which is about five
and the total roughne$% of the annulus. We used a surface times T. The results are seen in Fig. 2. We also plot the
analyzer(Talysurf Serie 12Pwith a resolution of 32.0 nm. standard deviation as bars. The period of rotation is almost
We determined the surface roughness along a width of 1@onstant at about 25 s while no collisions occur, i.e.,Nor
mm at three different points of the channel which resulted in=1, . . .,15. If the particle number is larger than 15, neigh-
R,=2.80 um andR;=15.60 um, respectively. A charge- boring spheres tend to collide. This is simply noted by sound
coupled device(CCD) camera is mounted on top of the emission. At this stage the spheres slow down. For 21 par-
swirling table to take images for analysis in the comovingticles the period of rotation is about three times higher than
frame. For visualization of the particle trajectories an annulafor noncolliding particles. At particle number 22 the sense of
lamp (Schott KL 1500 electronjoon top of the setup is used. rotation of the cluster changes its sign and rotates the other
As spheres we use precision beads of five different materialsvay around. This is what we describe as the reptation mode
bronze(material densityp=8.5 g/cni), brass (8.4 g/cr), [7]. Further increase oN increases the particle velocities.
Polyurethane(PUR) (1.2 g/cn?), an elastomer, and two Nevertheless this behavior breaks down for 27 and 28 par-
types of soda lime glas@las$ (2.5 g/cni) spheres, one ticles. Here, packing density is so high that again the cluster
with a rough surface and the other with a polished surfaceslows down.
The sphere diameteat is the same for all materials, 10 mm. For N=24 we observe a longitudinal density wave
However, tolerances of the diameter differ: bronze and brassLDW). A snapshot of the setup under this condition shows
+0.11 mm; PUR,—0.15 to +0.10 mm; and Soda Lime that the spheres are not homogeneously distributed. The
glass,+0.02 mm. packing density is high in the region where two spheres col-

A. Experimental setup
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FIG. 2. Dependence of the period of rotation on the number of é I ¢ pc/pmax
spheres(material: bronze; channel width: 10.5 mm; driving fre- S o8} 4
quency: 2.5 Hx E‘)
lide and low on the opposite side of the channel. The region § I
of maximum packing density, namely, the collision point of ~ — 07} I .
two spheres, circulates in the positive direction with the & I
same frequency as the driving frequency of the swirling table
and resembles a solitary density wave. LDWs are also found (b)
for N=21, 22, and 23. However, here the wave extinguishes 06— 19 2 6 8
because of voids where the particle density is too low and a .
binary collision cannot occur because the spheres do not Channel width (mm)

touch. However, it will again start if the particle density be-

comes sufficiently high, FIG. 4. (a) Influence of the channel width on the critical packing

densityp. of the spheres and the maximum packing dengjty,.
5 Influence of channel width (b_) Relative _pa.cking dgnsitpclpmax with r.espect to the channel
width (material: bronze; driving frequency: 3 Hz
To study the influence of the channel widthwe conduct

the same experiment as described in the preceding sectigroint the cluster is sometimes so slow that we cannot obtain

but using different channels. Again we use bronze sphereany measurement within a reasonable time. However, in this

The driving frequency is now fixed at 3 Hz. Figure 3 showscase we can determine a lower and upper boundary for the

results forw=10.5 mm and 18.0 mm, respectively. In this particle number where the change of the sense of rotation

diagram we plot the frequency of rotatidg of the cluster takes place. It is observed thit, is shifted from a critical

instead of the period of rotatioR as in Fig. 2. Therefore the number between 23 and 24 spheres for the smallest channel

critical point N, is not a singularity; it is now located where to about 30 spheres for the broadest one.

the curve intersect, = 0. Because our particles are discrete  To analyze the influence of the channel width on the criti-

we cannot exactly measuid,. Moreover, near the critical cal point we introduce a two-dimensional critical packing
densityp.. We plot the ratio of the area the spheres cover to

""""" the area of the annulus:

0.2+ 4
oesesvtttesctes Channel width d2N
"h I
e o 10.5mm Pc= > @
01} . e 18.0mm - B8R, W—4w

versus the channel widffsee Fig. 4a)]. Here we show the
borders where we still observe motion of the cluster in the
rotation (lower quadratic poinjsand reptation modéupper
guadratic points p. is located within this intervalbarg. It
T is seen thap.(w) has a parabolic shape with a minimum at
aboutw=15 mm. This can be related to the maximum num-
ber of spheres that fit in the annular channel and that give a
"o 10 20 30 40 50 maximum packing densitg,,,,. Its dependency ow is also
Number of spheres shovyn in Fig. 43) (opgn circles o
Figure 5 serves to illustrate the determinatiorpgf,,: If
FIG. 3. Dependence of the frequency of rotation on the numbethe channel is narrow and the spheres build a one-
of spheres for two different channel widthwsaterial: bronze; driv-  dimensional array the voids are small and thus we get a high
ing frequency: 3 Hg packing density. If the channel is wide as shown in our

Frequency of rotation (Hz)
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FIG. 5. Schema to calculate the dependence of the critical pack-
ing density on the channel width.

schema the center of mass of the beads arrange in a zigzag
line. Because here the voids are large we get a lower packing
density. The maximum packing density is derived by consid-
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ering the two-dimensional area one sphere covegsin a
certain section of the channAl,,. A;, is determined by the
angleé.

For the following calculation we impose two constraints:

FIG. 6. Influence of the channel width on the frequency of ro-
tation averaged for particle number 1 to (tBaterial: bronze; driv-
ing frequency: 3 Hg

First we have to take into account that the calculation idooks qualitatively likep . disregarding a vertical shift. The

restricted to a certain range of the particle diameter:
=10 mm=sw=d(1+3/2)=18.7 mm. The upper limit re-

ratio p./pmax, hOwever see Fig. 4b)], is constant for wider
channels w=14, 16, and 18 mm For smaller channels

fers to the case where the center of three neighboring spherés=10.5, 11, and 12 minp./pmax deviates. Nevertheless

forms an equilateral triangle to achieve a close packed struawve conclude that the critical point where there is a transition
ture. For wider channels the spheres can be arranged in difrom rotation to reptation mode can be related to the maxi-
ferent configurations, which give different packing densitiesmum numbers of spheres that fit into the annular channel.

In the experiment we do not investigate the casewof
=18 mm. Second the calculation only holds forr/®
= integer. Nevertheless, because& 27 the violation of this
assumption does not play a crucial role.

The maximum packing density is defined as

Asp
Pmax= A_ch (2)

with Agy=d?m/4 and Agy= (RouW—wW?/2)6. The only un-
known value is the angl® which can be obtained via the
cosine law(see Fig. &

AB’=MA?+MB?—2MA MB cosé, ®))

whereAB=d, MA=R,,—d/2, andMB =R+ d/2—w.
Thus,

2dw—w?2
g=arcco$ 1— — 5 (4)
2R5,i— 2Ry, Ww—d</2+dw
and
B d?x
pmax 4R0ut\N— 2W2
2dw—w?2 -t
X|arccos$ 1— > >
2R5,— 2Rouw—d“/2+ dw
5

In Fig. 4(a) this function is shown as a curveolid line)

This is supported by the fact that the packing density rises
when collisions occur as in the case of LDWs. It is likely that
then the spheres almost reach the state of the highest possible
packing density and that this state governs the global behav-
ior of the cluster. We believe that this is of interest because
in other systems the maximum packing density normally de-
pends on the size distribution of the particles or on the his-
tory of achieving a packing structufé7].

Finally, our interest focuses on the influence of the chan-
nel width in the zone where no collisions are observed. Fig-
ure 3 shows that in this regidd has no influence of,. The
resulting plateau is a characteristic feature of the phase dia-
gram. We derive the mean value of the rotation frequency for
beads 1 to 10 and show it versus the channel w(Btp. 6).

A linear dependency is obtained. Because the probability of
sphere-wall collisions is less in the wider channel the spheres
have a better chance of gaining a larger velocity before col-
liding with the walls. This is of importance for obtaining a
one-dimensional theory of the problem, because it cannot
take into account the clearance of the spheres. Extrapolating
the line in Fig. 6 tow=10 mm, which is the sphere diam-
eter, hints at how the dynamics of a single sphere in the
no-collision zone has to be modeled.

3. Influence of driving frequency

In this section we look at the dependence of the rotation
frequency of the cluster on the driving frequency of our sys-
tem. We restrict our measurements to the channel width
=10.5 mm and use bronze spheres. Figure 7 shows results
for different particle numbers. For 1 and 10 particles the
response of s on f is linear, neglecting the initial points at
fq=1 Hz. ForN=20 we find a quite similar behavior, but

intersecting the open circles which denotes the maximunat high frequenciesf4=3.5 Hz) we approach a new re-

packing density for the examined channels. On first sjght

gime: Here we notice the onset of LDWSs, which result in a
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FIG. 7. Dependence of the frequency of rotation of the spheres
on the driving frequency of the swirling table for different numbers
of spheregmaterial: bronze; channel width: 10.5 mm

FIG. 8. Dependence of the frequency of rotation on the driving
frequency for different material(lumber of spheres: 10; channel
width: 10.5 mn). The line serves as a guide to the eye.

higher velocity of the spheres. This onset is also observed for

20 and 21 spheres although at higher driving frequenciesnost noticeable effect and only tends to slow downf at
For N=22 we observe thafty changes its sign, i.e., that the —4 5 Hz. Unfortunately limitations in the apparatus do not
cluster reptates at low frequencies and rotates at high fregjow us to perform measurements at higher frequencies.
quencies. Thus, we conclude that the critical point where th%omparing the results of Fig. 8 and Fig. 9 shows that the
sense of rotation changes not only depends on the packingferences in the dynamics of the cluster for different mate-
density but also on the driving frequency. 24, 25, and 2qa|s are not governed by sphere-container interactions; here
spheres show thdt first increases ak, is increased but also  the sphere-sphere interactions influence the behavior for dif-
that the spheres slow down at high frequencies. For thes@rent materials.

particle numbers the curves in Fig. 7 are obtained by para- |mpact experiment§21] show that the restitution coeffi-
bolic fits and serve as a guide to the eye. We believe that thgient, which indicates how much energy is dissipated during
velocity reduction at high driving frequencies is due to they pinary collision, is velocity dependent. For example, the
fact that the dynamics of a single sphere is different in thisestitution coefficients of bronze and brass decrease with in-
regime. Here the friction coefficient between sphere materiggreasing impact velocity. Because it is obvious that we get
and Plexiglas might change, or the spinning motion of thenigher sphere velocities at higher driving frequencies it is
spheres might become significant. That this is of importanc@atyral that the cluster has to slow down when the restitution
can be experienced during every billiard gafi8] and was  coefficient is smaller. In the case of bronze and brass this
also observed by Drake performing granular flow eXperi-picture is in agreement with the findings of Goldsniigt].
ments[19]. By visual inspection we observe that the spheressecause we do not know the velocity dependence of the

are more likely to slide at high frequencies and high packingestitution coefficient of our five different materials we only
densities. This can be explained by the fact that after a col-

lision a sphere has a higher velocity compared to the situa-

tion at low frequencies and low packing densities. According 0.00 ' ' ' o
to Ref.[20] the transition time from sliding to rolling for a f
single sphere depends linearly on the velocity. Nevertheless N H S /
this phenomenon remains to be understood. Further investi-< 905} \\ Y .
gations with high speed visualization and a technique that § \%\ /S s
allows resolution of the spin of a single sphere are necessary \ / a/ o
to uncover the underlying mechanism. = " /A{//v
In addition we study the response behavior of different 5 010 m  Glass, rough %;i/‘ i
materials. Under the above-mentioned conditions we per- 2 o Glass, polished v ]
form runs with five different materials: bronze, brass, PUR, & A Brass e
glass(polished and rough In Fig. 8 we see the behavior of % 015} v Bronze \1\ 4
a cluster of 10 particles. It is seen that there is only a slight & ¢ PUR o
discrepancy for different materials. s \ . ) ]
In contrast to this finding we note that a cluster of 25 0 1 2 3 4 5
spheres reflects the influence of the sphere matees Fig. Frequency of driving (Hz)
9). On the one hand we do not see any difference at low
frequencies {3;=<2.5 Hz) but on the other hanid changes FIG. 9. Dependence of the frequency of rotation on the driving

dramatically at high driving frequencies: Bronze and brassrequency for different materialnumber of spheres: 25; channel
only show a slight difference while rough and polished glasswidth: 10.5 mn). All curves have parabolic shapes except for pol-
deviate systematically at higher frequencies. PUR has thished glass where a cubic fit is more reasonable.
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view of the particle dynamics in addition to the global be-
havior of the total image. We plot the 512 points of our
digitized circle horizontally. This means that left and right
sides yield periodic boundaries. The vertical coordinate gives
the time. We show 512 lines that represent an observation
time T of 10.24 s. Time starts at the bottom of each image
and continues to the top.

For N=10 we see the dynamical behavior of spheres in
the no collision zone. On each horizontal line the center of
mass of each bead appears as a black spot. As time
progresses the spheres shift to the right. Despite this global
translation, a single sphere oscillates back and forward as
time proceeds. The forward motion is larger than the back

FIG. 10. Stages for taking space-time plota} shows a real motion that results in a positive translatory movement. This
image with the top view of the experiment. Spheres appear with &ehavior is found for every particle. By looking at the global
light spot in the center(b) shows a real image with reduced aper- hehavior it is also clear that the spheres do not have the same
ture. The white line .crossi.ng the white spots i§ digitized and appearﬁanslatory velocities. There are regions where the packing
as the space coordinate in Fig. 16) Inverted image ofb). density is higher and the spheres slow down. This might be

caused either by inhomogeneities of the channel that can be

can speculate on the influence of different materials. Agaimoticed in space-time plots with an extended time coordinate
further examinations are encouraged. Our apparatus miglg by single binary collisions, which reduce the speed of the

also be suitable to uncover influences of material parametejsarticles even though collisions are rare at this stage. As the
because microscopic behavior like the dynamics of a binarymper of particles increases the probability for collisions is
collision is transferred onto a mesoscopic scale where itnhanced. Note that the black lines of the trajectories do not

gives rise to a global dynamical behavior, the rotation of the, ) ,.h because they represent the center of mass of the
cluster. spheres. A collision occurs when the distance between two
black spots on a horizontal line equals one particle diameter.

4. Visualization of particle dynamics Near the critical point where the sense of rotation changes

In an alternative experimental approach to understand th&e see large scale fluctuations of the oscillation amplitude
basic mechanism of the process we visualize the trajectorigseeN=21 and 22 in Fig. 1L Here we also see voids where
of the particles. Figure 10 shows the different steps of outhe packing density is low and areas where the packing den-
procedure. The experimental conditions are chosen for consity is high. ForN=22 strength of the forward motion van-
parison with the phase diagram of Fig. 2, i.fy=2.5 Hz, ishes, the cluster is in the reptation mode and moves in the
w=10.5 mm and bronze as bead material. Figur€a)l0 negative direction. It is also observed that the space time
gives a real image of the top view of the setup taken by thelots have an ordered structure for lafjevhereas the de-
CCD camera. Due to the lighting of the annular laispe  gree of order is less at the critical point due to fluctuations.
Fig. 1) the center of mass of single spheres appear as bright |n Sec. 11 B 1 we pointed out that we observe longitudinal
spots. We now lower the aperture of the camera because YWfinsity waves by visual inspection of our setup. These

are only interested in the center o_f mass of.the spheres. Thispws are also found in the presented space time plots. In
also enhances the contrast of the imdge® Fig. 1)]. The  Fig 11 e.g., foN = 25 we see the collision point where one

center of the spheres now appear as tiny light spots. Becaugghare moves back and then suddenly collides with the
Itis m((j)re cpnve?ltehnt to look atdblart:k sptots ona I'gh;[:.b""ck'sphere on the left side which itself moves in positive direc-
ground we Invert e image and show I negafivee Fig. tion. As a result the back moving sphere changes its direction
10(c)]. Next, we only take shots of the middle of the annular nd collides with its back moving neighbor on the right,

channel. In Fig. 10 these points appear as a thin white circl - ; . .
that crosses the center of mass of the spheres. The circle i ence, we _get a hew (.:OII'S.'OH point. AS. time goes on .th's
divided counterclockwise into 512 points and plotted as roint shifts in positive d|r(_act|_on. annectmg all the collls_lon
space time plot in Fig. 11. We take images every 20 ms€vents we get a Im_e that is tilted with respect to the honzpn—
Because of the clearance of the spheres with respect to tHgl (56eN=25 in Fig. 11. For N=23 we also observe this
channel width we unfocus the camera. Hence, the center din€, but it is obvious that the wave breaks up due to voids.
the spheres appears broader and are available at every step ofln summary, by visualizing particle trajectories in our an-
the visualization process. This has the advantage that we di!lus we find the following dynamical features of our sys-
not get voids in our space time plots when the center of théem: First, a single particle has a slow positive drift and in
particles are not exactly in the middle of the channel and theddition shows a fast oscillation reflecting the driving fre-
spots get lost. guency. This is in good agreement with a theoretical model

In Fig. 11 we present twelve space-time evolutions forthat is presented in the next chapter and uncovers the basic
different numbers of spheres. The number in the upper leftnechanism of the observed phenomenon. Second, near the
corner of each image denotes the number of particles in theritical point long scale fluctuations are found. For high
annulus. An inlet in the upper right corner shows a magnifiecpacking densities the space time plots display an ordered
section of the space time plot. This gives a more detailedgtructure. Finally we showed the existence of LDWSs.
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FIG. 11. Space-time evolution of sphere traces. The centers of mass of the spheres appéarabéaiad: bronze; channel width: 10.5
mm; driving frequency: 2.5 Hz The horizontal axes are the space coordiné@es 27r) while the vertical axes show the tinfé to 10.24
s). The number in the upper left corner denotes the number of spheres. A magnified section can be seen in the upper right dédrner. For
=23 andN=25 a straight line indicates a longitudinal density wave.
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For a theoretical discussion of the observed phenomena ) _ ]
we start with the analytical description of the behavior of a_ On the other hand i&/»<1 no stationary solutions of
single bead in a swirled annulus. Assuming that the channdfd: (9) exist and the bead permanently lags behind the ex-
width coincides with the diameter of the bead we arrive at 48al swirling. It is this regime that is relevant to the experi-
one-dimensional model in which the position of the sphere ign€nts in whichs=0.2 and a single bead shows a slow drift
specified by the angleé (see Fig. 12 The equation of mo- Superimposed by small oscillations with the external fre-

tion is guencyw. To account for this motion we splip(t) into a
slow parte(t) and a fast oscillating part with small ampli-
. . Aw’m tude Se(t):
me+T ¢+ R sin(¢— wt) =0, (6)
(1) =o(t) + Se(t) (10

wherem denotes the mass of the be&tthe distance of its , . ) .
center from the center of the annulus, ahéndw amplitude ~ @nd try to find an equation of motion fai(t) by averaging
and frequency of the swirling motion, respectively. We have®Ver o¢ [22].

assumed a simple phenomenological friction law with con- Using Ea.(10) in Eq. (7) we get

stantI" to treat the complicated process of stick-slip motion .. . . : ]

on the surface of the container and the interaction with the ¢+ 0@+ 7¢+ ndp=—esin(¢+dp—t)

boundaries. Although other laws might be more realistic for i _

granular material we will stick to this simple form in the =~esine—)+scote—1)dp.

present discussion. (11
Rescaling time by— wt we find the dimensionless form ] ) ]
of Eq. (6) The slow and the fast part ab must fulfill this equation

separately. For the fast part we find
b+ no+esin(p—1)=0, () - - .
¢+ nd ¢ Sp+ndp=—¢esin(p—t) (12
where
t !
r A Sp= —sf dt’e” """cog o —t'), (13
= = 0
= and e R (8

o ) ) _ where we have neglected the term involving betand ¢
There are two qualitatively different solutions to this gng assumed that is constant at the scale éf. Using this

equation that can be most easily distinguished by transfornyesy|t in Eq.(11) and averaging over one period of the ex-
ing into the comoving coordinate system vie= ¢—t. We  terng| forcing we arrive at

then get
2 2 1_6—27777
S ( )[(1+ n?)coge—1].
21+ 9% 2m(1+ 5?)?
(14

. . J p ;
ik = e sing—n=——_ (s cosp) (9 e e

and ¢ simply performs a damped motion in a tilted cosine
potential (see Fig. 13 It is clear that fore/%>1, i.e., if
Amw/(I'R)>1, there are stationary solutions of E®) in
the minima of the potential corresponding revolutions of
the bead with the frequency of the external driviNgte that o+ np= ——
this condition is always fulfilled fol’— 0. 2(1+ 7%

For not too smally the second term is negligible and we
simply get

2
° 7 (15
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yielding 6 . . . . .
o2 5} @
(t)= ——-t+const. (16)
¢ 2(1+ %) al |
No contact
This equation could also be derived from E@) by neglect- @ 3
ing the inertial term. It describes the slow average drift of the o °[ Overla ]
bead around the annulus induced by the swirling motion as E P
observed in the experiments and serves to determini 2r
the following sections we want to refer to an experimental No contact
sample(see Fig. 2 Thus, € is fixed by the experimental r i
setup to 0.21 and the drift of a single bead is given by 0.015 Overlap
in terms off . Hence we gety=0.7. 022 23 24 25 26 27 28

B. Free path restriction Number of spheres
By looking at the dynamics of a single sphere we showed FIG. 14. Visu_alization of the free path restriction. The solid line
that the motion of a swirling table stimulates a bead to drifiefers to the point where the spheres touch. In between_ there are
in one direction accompanied by a fast back and forwar ones of no contact and zones where the spheres thg_oreneglly_ over-
oscillation. In a second approach it is interesting to ask 2P Parameters are chosen to represent the conditions similar to

What will happen if we consider two or even more spheres’.Shose of Fig. 2.
Is there a condition for which they collide? It is obvious that

increasing the packing density of the system decreases ﬂb%ase delay. Moreoverp,— b+ with ;0 for t=0.

free pathB of the spheres, wher@=2=/N (see Fig. 12 If . . "
B— & is of the order of the mean oscillation amplitude of a_Fmally, we have to define a condition where the two spheres

single sphere that can be expressed by an angh®e can initially touch:

expect that two neighboring spheres will collide. Héreep- b1— <. (20)

resents the sphere diameter in angular units. In the experi-

menté is always 0.22. Under the conditions that result in the  with Eq. (18) and Eq.(19) we obtain

phase diagram seen in Fig. 2 the positive amplitade 6.5

mm, which givesa=0.15. Hence we get a critical number . B—96

N of 17 spheres for our above-mentioned experimental con- codwt—pl2)sin(pl2)= ———. (22)

ditions. ForN<17 two neighboring spheres will not touch

whereas they will collide ifN exceeds this critical number. Because sin§/2) and (83— 6)/(2a) always exceed 0 and

N is in good agreement with experimental findings. Wecoswt—/2) can be negative, it is obvious that our initial

found that forN>16 there will be single collisions that slow condition[Eqg. (20)] is restricted with respect to the phase of

down the rotation period of the cluster. motion wt. This means that we do not get a solution for
Adding two assumptions to the idea that collisions occurz/2+ g/2< wt<3w/2+ Bl2. For — w2+ B2< wt<m/2

when individual oscillations become restricted leads to a+ B/2 two solutions can be obtained by solving E21) for
more sophisticated model: First we suppose that the sphergs

are distributed homogeneously throughout the annulus as in (i) (7/w)(1N+k)<t<(7/w)(1/N+k+1/2):
Fig. 12. Second we simplify the dynamics of a single sphere

For simplicity we suppose thapy=0, i.e., we skip the

by only allowing a constant drift superimposed on a sinu- 1 T o 1 T 2wk
soidal oscillation: t=- ;arCCOHM - z)m TN o
o= asinot— o)+ (N-1B+st, (A7) (22
and
where n denotes the bead in the annulug,,= ¢,— ¢g,
én=d1+(nN—1)B, and ¢, is a phase delay. (i) (7 o)(IIN+Kk—1/2)<t<(7/w)(1IN+K):
While this gives an oversimplified picture of the motion
of a single sphere we believe that it is sufficient to track 1 T o 1 T 27wk
down an initial collision model involving many spheres. =~ ;arcco%(m— Z)m} TN o
However, we only have to consider two sphefeg., sphere (23)
1 and sphere 2 in Fig. 12
Thus, forn=1 we get Here, for convenienceg is expressed in terms of the
number of particleN andk=0,24 . ...
¢1=asin(wt)+ vt (19 In Fig. 14, we plot Eq(22) and Eq.(23) as a function of
particle numbem for our experimental sample. It indicates
and for sphere 2: that below a critical numbeN., which is about 24.5 there

exists no solution, i.e., the spheres do not collide. Increasing
¢o=asinwt— B)+ B+ vt. (199  the packing density has the effect that our initial condition
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0 G S betweerN=24 and 25 in the experiment? In our opinion this

> >; ‘2 I . is due to the fact that in our model we suppose a constant
; ; S drift for each particle and a homogeneous distribution. Under
e cas experimental conditions this assumption breaks down and
b the critical point is shifted to smaller particle numbers.

C. Many particle simulation

FIG. 15. Simulation of the space-time evolution under sample  To support the idea that energy dissipation by binary col-
conditions. The horizontal axes show the space coordifatly a  |isions is responsible for the change of the rotation sense in
part of the annulus is shownTime is on the vertical axe&wo the annular channel we simulate H6) for many particles
oscillations are seenThe spheres appear in gray, centers of mas§23). The computational procedure consists of two different
in w_hite, and_ borders in black. The number of spheres in the anNNUsieps: First we adjust our numerical system by looking at the
lus is found in the upper left corner. dynamics of a single sphere. In E@) we got two different

. arametersy and e, which govern the dynamics. Because
[Eq. (20)] becomes valid and the beads touch and even ovel- : ’ : .
lap theoretically. Note that in the experiment an overlap isze again want to refer to our experimental samjsiee Fig.

: : . , € is fixed by the experimental setup to 0.241.was de-
not possible; the spheres either separate or stick together f 2 € . ;
a certain period. FON=25, 26, 27, and 28 we get phases?ermmed by Eq.(16) to be 0.7. Second we investigate the

: behavior of many particles. We initialize our system by
8hoosing random values for space coordinates and velocity.

;?;?ﬁlgttsthget?r?n\gcgvgu?i%ﬂogfl(;hlg ttr'glee'sz? :grﬁgosrz)rgglrse;vf% \{Ve solve the basic equation for the first particle and ask for
different particle numberésee Fig. 15 For N=20 the tra- its new position after a certain time stdp. Next we look at

actories are not disturbed whereas thev come close when tWhether it touches one of its neighboring particles. In the
Jecte o Y }E%se that there is no collision event we proceed to the next
particle number is increased to 24. In the cas®&ef25 we

see that the spheres collide and even overlap slightly. For Zgalmclle. V\thn there 'IS "’.‘.C"!"S'O(;‘ k,)etweer;.;(\f/vo spheris we
particles this tendency is enhanced. Note that collision ang®c! ate their new ve ocities, an va- Two different mod- )
overlap only take place during forward movement of theeIs were used to sq‘nu.late. the_ c.oII|S|on process. In Fhe first
spheres. In contrast, the spheres are separated while movif:gfd.el[llz| energy dlSSlpathn |s.|ntroduced by reducing the
back. What happens when the spheres touch or overlap? [ ative motion of both particles:

reality the spheres can only collide. This means that due to
the inelastic character of the material energy will be dissi-
pated and therefore the forward motion has to slow down. i . o o
Moreover it is worthwhile to consider that the spheres mightVheré is the coefficient of restitution that for simplicity is
stick together during the phase of theoretical overlap. Be2SSumed to be independent of the incident velocity. Com-
cause the spheres rotate in the same sense there is sheaP
the contact point. This means that even more energy is dis-
sipated. Thus the idea is supported that the forward motion (vi)

vy v1=~p(v= V), (24)

iged with the conservation of momentum we hence get

U1
F—

Figure 16a) compares the numerical results with experi-
ental findings. Here we vary the restitution coefficient to
show its influence on many particle dynamics. We let the
spheres relax during a periodtof 20/f 4. Next the velocities

(1-v)2  (1+v)I2
(1+v)/2 (1-v)/2

will be depressed due to collisions and tangential shear. In vh
the extreme case the two spheres will stop moving in the

positive direction and only move back. These considerations
are confirmed by looking at the experimental space—timqn
plots presented in Fig. 11. Fbf=28 it is clear that the beads

do not move in the positive direction at all. However, they

separate for some time during the phase of back motion S8 all spheres are averaged ower100f . This gives repro-

theI)r/1 %itr toheincicrnlzl rt]rﬁg itgezhgf aofrrég” t:;flhd:(.astriction covers thedUCible values. The system is not sensitiveltp which we
P P . choose to be 0.001 in units off}/ It is obvious that the

main mechanism of the effect that swirling granular matter " evolution frequency of the beads in the no collision zone is

ggnavr\]/?\léﬁihcgﬁ:rrfgéfz?l;s;irlgc?egi]:?r?geogst:; SA?T(S)\?V g];(r:?(%dependent ob. In contradiction to the experiment we find
) o . . . ' . that for N> 20 the velocities of the cluster first increase and
ing densities single trajectories of the spheres are not dlsthen decrease for large packing densities. Finally, when the
turbed, the distance traveled in the positive direction is IargeFin is almost filled with particles the' rotatio’n sense
than in the negative one. This gives a constant drift. When 9 P '

the particle number is increased the spheres touch duringhanges. Varying the coefficient of restitution only shows a
forward motion and dissipate energy. This restricts forwarqgIght m_fluencg on t.h.e behavior. _Even in the case of com-
pletely inelastic collisions, where=0, we are not able to

motion. At the critical point the forward and back move- ;
f{eproduce the experimental results.

ments equalize and the spheres just oscillate with no dri Due to this obvious discrepancy we tested a second model
although large fluctuations of the oscillation amplitude are, 1 ere we reduce the transmliatted ):nomentum during a binar
observedsee, e.g.N=21 in Fig. 11. For high packing den- 9 y

sities dissipation is so high that the back motion predomi-COII'Slon:

nates.
Why do we not see a change of the sense of rotation vptv=p(vatuoy), (26)
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T This behavior changes dramatically for=0.95 where we
0.02 . already approach the empirical findings. Using lower coeffi-
cients of restitution does not alter the global behavior. For
0.00 O v=0.7 we get a good agreement in the transition zone, only
the points forN>26 do not match exactly.
—m—Exp. Comparing the numerical results of both models we con-
O -0.02 Coeff. of . clude that a model that only describes energy dissipation by
o ! Restitution central collisions in addition to conservation of momentum
——1.0 . . . .
004 | el 0.9 1 does not reflect the experimental situation. We believe that
——05 due to the rotational motion of the spheres and noncentral
, O+ 0.0 collisions leading to wall contact momentum gets lost during
006 @ . each collision process. Improved collision models that treat
R N S the spheres as rotating three-dimensional objects and include
0.02 L a coefficient of rotational restitution and a coefficient of slid-
: e ing friction as demonstrated, e.g., in REZ4] could be used
' to confirm this interpretation.
0.00
IV. CONCLUSIONS
—&—Exp.
o« 0021 R 1 ~ The phenomenon that a layer of granular material changes
4 —o— 10 its sense of rotation while swirled in a container was inves-
004k el 0.99 i tigated in an annular channel. This reduced system uncovers
D the basic mechanism of the effect. It is also suited to study
—A— 040 - collision dynamics of granular columns. It was found that the
006 (b) =0 0.00 1 global behavior is not changed by the width of the channel
. ' L : : but that it shows influences of different possible packing
0 5 10 15 20 25 30

structures. The critical point where there is a transition from
Number of spheres rotation to reptation mode does not depend only on the num-
ber of particles but also on the driving frequency. At high
FIG. 16. Comparison of experimental results with numericalfrequencies we showed that the material parameters become
simulations of many particles with respect to the coefficient of ressignificant. By visualizing the particle trajectories we hinted
titution. Parameters are chosen to match with conditions of those iat how to model the dynamics of a single sphere. Moreover
Fig. 2. In(a) we assume a model where the coefficient of restitutionong scale fluctuations at the critical point and a transition to
reduces the relative velocity of two colliding spheres wheredb)in  an ordered state at high packing densities were presented.
we assume a model in which the absolute value of the particlgyyr simple one-dimensional model is in good agreement
velocity is reduced. with our experimental findings. The dynamics of a single
] _ particle can be related to a friction coefficient and the ratio of
wherey is a number between 0 and 1 that gives the amounghaking amplitude to the radius of the channel. The typical
of momentum that is conserved during a binary collision.experimental behavior, which consists of a slow drift and a
The conservation of momentum is violated in two ways.fast oscillation of the bead, was confirmed. Finally, by intro-
First, sphere collisions are not central due to the clearance qucing the idea of a free path restriction and by simulating
the spheres in the annular channel. Thus the contact betwegQ, pasic equation for many particles we tracked down the
channel. Second tangential friction at the contact point playgccur when the packing density exceeds a critical number
a significant role during the collision process. Combining Eq.and when the spheres swing in the positive direction. In this

(24) and Eq.(26) and with = v we obtain case the forward motion is suppressed by energy dissipation.
, At high packing densities the back swing predominates and
vi) [0 v)(vs the whole cluster turns the other way around.
vol \v 0f\vy) 27
2 2
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